Disruptive technology to revolutionize lithium production from the world’s most abundant lithium minerals

+ lithium micas and clays

= low cost production of lithium carbonate, lithium hydroxide, & valuable by-products
Technology has trumped the tyranny of distance and place no longer matters

TELL SOMEONE PRODUCING:
- Nickel in Siberia
- Copper in Mongolia, or
- Spodumene concentrates at Pilgangoora

PLACE DOES MATTER – YOU CAN’T MOVE THE OREBODY!
But you can improve economics with good processing technology
- Low energy
- Low operating cost
- Strong by-product credits
- Technology that is disruptive

WHAT IS DISRUPTIVE TECHNOLOGY?
The history of lithium is a history of disruption
- There is a new wave of disruption
- Turn geological curiosities into reserves
- Lithium Australia leads the pack
Disclaimer

This presentation is for information purposes only. Neither this presentation nor the information contained in it constitutes an offer, invitation, solicitation or recommendation in relation to the purchase or sale of shares in any jurisdiction.

This presentation may not be distributed in any jurisdiction except in accordance with the legal requirements applicable in that jurisdiction. Recipients should inform themselves of the restrictions that apply in their own jurisdiction. A failure to do so may result in a violation of securities laws in that jurisdiction.

This presentation does not constitute financial product advice and has been prepared without taking into account the recipients’ investment objectives, financial circumstances or particular needs, and the opinions and recommendations in this presentation are not intended to represent recommendations to particular persons. Recipients should seek professional advice when deciding if an investment is appropriate. All securities transactions involve risks, which include, among others, the risk of adverse or unanticipated market, financial or political developments.

Certain statements contained in this presentation, including information as to the future financial or operating performance of Lithium Australia NL (‘LIT’ or ‘the Company’) and its projects, are forward-looking statements. Such forward-looking statements are necessarily based on a number of estimates and assumptions that, while considered reasonable by LIT, are inherently subject to significant technical, business, economic, competitive, political and social uncertainties and contingencies, involve known and unknown risks and uncertainties that could cause actual events or results to differ materially from estimated or anticipated events or results reflected in such forward-looking statements, and may include, among other things, statements regarding targets, estimates and assumptions in respect of commodity prices, operating costs and results, capital expenditures, ore reserves and mineral resources and anticipated grades and recovery rates and are, or may be, based on assumptions and estimates related to future technical, economic, market, political, social and other conditions.

LIT disclaims any intent or obligation to update publicly any forward-looking statements, whether as a result of new information, future events or results or otherwise. The words ‘believe’, ‘expect’, ‘anticipate’, ‘indicate’, ‘contemplate’, ‘target’, ‘plan’, ‘intends’, ‘continue’, ‘budget’, ‘estimate’, ‘may’, ‘will’, ‘schedule’ and other, similar expressions identify forward-looking statements. All forward-looking statements made in this presentation are qualified by the foregoing cautionary statements. Investors are cautioned that forward-looking statements are not guarantees of future performance and, accordingly, investors are cautioned not to put undue reliance on forward-looking statements due to the inherent uncertainty therein.

Many known and unknown factors could cause actual events or results to differ materially from estimated or anticipated events or results reflected in such forward-looking statements. Such factors include, but are not limited to: competition; mineral prices; ability to meet additional funding requirements; exploration, development and operating risks; uninsurable risks; uncertainties inherent in ore reserve and resource estimates; dependence on third-party smelting facilities; factors associated with foreign operations and related regulatory risks; environmental regulation and liability; currency risks; effects of inflation on results of operations; factors relating to title to properties; native title and Aboriginal heritage issues; dependence on key personnel, and share-price volatility. They also include unanticipated and unusual events, many of which is beyond the Company’s ability to control or predict.

Photographs in this presentation do not depict assets of the Company.

COMPETENT PERSON’S STATEMENT

The information in this report that relates to reporting of Exploration Results is based on and fairly represents information and supporting documentation prepared by Adrian Griffin, a member of the Australasian Institute of Mining and Metallurgy. Mr Griffin is a shareholder in, and managing director of, LIT and has sufficient experience relevant to the style of mineralisation and type of deposit under consideration. He is qualified as a Competent Person as defined in the 2012 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Griffin consents to the inclusion in this report of the matters based on information in the form and context in which it appears.

The reporting of mineral species is generic in nature, and the term ‘lepidolite’ – as it is applied to mineral species, and not necessarily locality names – includes mineral species widely considered to be part of the solid solution series of polythionite/trilithionite, of which the Competent Person considers lepidolite to be approximately a median member. It is also acknowledged that material processed from Lepidolite Hill has bulk compositions tending towards trilithionite, although the rubidium concentration is outside the range generally expected in such minerals.

Similarly, the term ‘zinnwaldite’ has been applied to minerals approximating the accepted composition of zinnwaldite but with variations tending towards lepidolite. This terminology is considered acceptable by the Competent Person, particularly with respect to the Cinovec deposit, the mineralization of which includes the type locality of zinnwaldite, being Zinnwald, close to the border of Germany and the Czech Republic.
Company snapshot

LITHIUM AUSTRALIA (LIT) – A UNIQUE FOCUS ON LITHIUM

BOARD OF DIRECTORS

George Bauk (non-executive chairman)
Expert in specialty metals, particularly rare earths – project management, marketing and financing.

Adrian Griffin (managing director)
Exploration, production, mine management.

Bryan Dixon (non-executive director)
Corporate, finance, mine development.

ASX ticker: LIT
ACN 126 129 413
- 141 M Ordinary Shares
- 44 M Partly Paid Shares
- 29 M Unlisted Options
- 13 M Performance Rights
- Market cap. $30 M (6 Jan 2016 – source Yahoo)

info@lithium-au.com
www.lithium-au.com
Lithium market

Consumption by application
- Aluminium: 32%
- Other: 17%
- Metallurgical powders: 17%
- Chemicals and pharmaceuticals: 11%
- Lubricants: 10%
- Batteries: 6%
- Glass and ceramics: 2%

Production by country
- Argentina: 11.3%
- Australia: 38.2%
- Brazil: 8.5%
- Chile: 3.1%
- China: 0.4%
- Portugal: 0.4%
- Zimbabwe: 1.6%

Demand for lithium batteries

HARD-ROCK PRODUCERS
- Talison, Greenbushes – Western Australia (WA)
- Sociedade Mineira de Pegmatites – Portugal
- Bikita Minerals (Pvt) Ltd – Zimbabwe
- Various – China

HARD-ROCK DEVELOPERS
- Pilbara Minerals, Pilgangoora – WA
- NeoMetals, Mt Marion – WA
- General Mining, Mt Cattlin – WA
- Altura, Wodgina – WA
- Nemaska Lithium, Whabouchi – Canada

Source: Market Outlook to 2017 – Roskill Information (2013).

HARD-ROCK PRODUCERS ARE PRIMARILY CONCENTRATE SUPPLIERS, NOT CHEMICAL PRODUCERS.
Disruptive technology to fill supply gap

ABUNDANT FEED POTENTIAL
- Lithium micas, a ‘forgotten resource’ – the most abundant lithium minerals
- Lithium clays – the emerging opportunity
- Other lithium silicates (pyroxenes, amphiboles, tourmalines)

EXCLUSIVE TECHNOLOGY AGREEMENTS

EXCLUSIVE LICENSING

ONGOING PROCESS EVALUATION

EXPANDING SUPPLY GAP & RAPIDLY INCREASING PRICES

VALUE ADD – HIGH QUALITY LITHIUM HYDROXIDE AND LITHIUM CARBONATE
Company strategy

To produce battery-grade lithium chemicals from unconventional mineral commodities

Produce the chemicals required by the end user not intermediates convenient for the supplier

Dominate global lithium inventories

Develop well serviced regional processing hubs
LIT progress for 2015

CINOVEC SCOPING STUDY
NON BINDING HoA WITH EUROPEAN METALS HOLDINGS LIMITED
CONTINUOUS PLANT RUN FOR LEPIDOLITE HILL
EARLY EXERCISE OF TECHNOLOGY LICENCE OPTION
CONTINUOUS PRODUCTION OF BATTERY GRADE LITHIUM CARBONATE
PROVEN CONVERSION OF LITHIUM CARBONATE TO LITHIUM HYDROXIDE

PROGRESS TO DECEMER 2015
► Geochemical techniques developed to detect buried lithium mica pegammites
► Geochemical surveys completed at Pilgangoora (Western Australia)
► Agreement with Alix Resources Corp (AIX-TSX:V)
► Nevada base Kappes Cassiday and Associates appointed for the evaluation of lithium clays

EXPECTATIONS FOR 2016
► Cinovec JVA
► Cinovec continuous mini plant run
► Continuous production of lithium hydroxide
► ALiX bench scale leach tests
► ALiX JVA
► Evaluation of additional European deposits
► Commitment to large-scale mica pilot testing
► Energy efficient outcome for the processing of lithium clays
► Leverage into lithium clay inventories
Lithium strategy since inception

SHARE PRICE DRIVERS
Exclusive technology, proof of concept, application of technology to Cinovec, conversion of lithium carbonate to hydroxide

Lithium Australia NL
5 Day VWAP

Daily turnover 1.17M
Low 1.8 cents
High 23 cents
SUPPLY CONSTRAINTS ARE DRIVING PRICES

Lithium hydroxide, a product easily produced from lithium micas, recently rose above US$14,000 per tonne. This product achieves a consistently high premium to the carbonate.
A Case Study – the Lithium Micas

CONTINUOUS PRODUCTION – BATTERY GRADE CHEMICALS
- Zero energy footprint
- Waste materials with no mining cost
- High feed grades
- Fast reaction time – low capital cost
- Product options include carbonate and hydroxide

UTILIZE A FORGOTTEN RESOURCE
- Capitalize on availability of the most abundant lithium minerals
- Utilize advantages of strategic partnerships
- Paradigm shift in operating cost profile
- Prosper from by-product credits
 - Potassium sulphate
 - Aluminium chemicals
 - Silicon chemicals
 - Rubidium, caesium and strontium chemicals

RE-EVALUATE GLOBAL LITHIUM OCCURRENCES
- Turn geological curiosities into reserves
- Target geological environments identified
- Global evaluation initiated
Lithium extraction from unconventional sources

Proof of concept

THE CONCEPT BECOMES REALITY

Zinnwaldite – lithium mica
K(Li,Al,Fe)₃(Al,Si)₄O₁₀(F,OH)₂

<table>
<thead>
<tr>
<th>Element</th>
<th>Mass (g/mole)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>39.0983</td>
</tr>
<tr>
<td>Li</td>
<td>6.941</td>
</tr>
<tr>
<td>Al</td>
<td>26.8915388</td>
</tr>
<tr>
<td>Rb</td>
<td>85.4578</td>
</tr>
</tbody>
</table>

Lepidolite – lithium mica
K(Li,Al,Rb)₃(Al,Si)₄O₁₀(F,OH)₂

FEED MATERIAL

Lithium concentrate grades

<table>
<thead>
<tr>
<th>Material</th>
<th>Li₂O %</th>
<th>K₂O %</th>
<th>CaO %</th>
<th>Al₂O₃ %</th>
<th>FeO %</th>
<th>MgO ppm</th>
<th>S ppm</th>
<th>Rb ppm</th>
<th>Cs ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cinovec</td>
<td>1.81</td>
<td>7.41</td>
<td>1.57</td>
<td>19.3</td>
<td>6.91</td>
<td>367</td>
<td>740</td>
<td>6671</td>
<td>222</td>
</tr>
<tr>
<td>Lepidolite Hill</td>
<td>2.25</td>
<td>6.63</td>
<td>0.72</td>
<td>23.71</td>
<td>1.00</td>
<td>600</td>
<td>100</td>
<td>22171</td>
<td>2100</td>
</tr>
</tbody>
</table>

FINAL PRODUCT FLEXIBILITY

Lithium carbonate purity 99.6%

<table>
<thead>
<tr>
<th>Material</th>
<th>Li₂O %</th>
<th>K₂O ppm</th>
<th>CaO ppm</th>
<th>Al₂O₃ ppm</th>
<th>SiO₂ ppm</th>
<th>FeO ppm</th>
<th>MgO ppm</th>
<th>S ppm</th>
<th>P ppm</th>
<th>Rb ppm</th>
<th>Cs ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cinovec</td>
<td>40.3</td>
<td>128</td>
<td>ND</td>
<td>54</td>
<td>23</td>
<td>ND</td>
<td>1042</td>
<td>94</td>
<td>8</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Lepidolite Hill</td>
<td>40.3</td>
<td>26</td>
<td>302</td>
<td>59</td>
<td>15</td>
<td>42</td>
<td>1116</td>
<td>2</td>
<td>2</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

Lithium hydroxide purity 99.9%

<table>
<thead>
<tr>
<th>Material</th>
<th>Li(OH) %</th>
<th>K₂O %</th>
<th>CaO %</th>
<th>Al₂O₃ %</th>
<th>SiO₂ %</th>
<th>FeO %</th>
<th>MgO %</th>
<th>S ppm</th>
<th>P ppm</th>
<th>Rb ppm</th>
<th>Cs ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lepidolite Hill</td>
<td>48.9</td>
<td>143</td>
<td>238</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>58</td>
<td>1200</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

Final metallurgical balances for lithium hydroxide production are pending
Continuous plant test – May 2015

- All process energy requirements derived via harvesting waste heat from a sulphur-burning acid plant.

Diagram:
- Sulphur feed to sulphuric acid plant.
- Sulphuric acid leach to Mica feed.
- Steam for power co-generation.
- Electricity for power co-generation and pH modifier.
- Carbonate feed for Lithium carbonate precipitation.
- Tailings from sulphuric acid leach and pH modifier.
- K₂SO₄ crystallization.

Commercial products:
- Lithium carbonate precipitation.
- Impurity removal.
Continuous technology improvement

EXPLORATION DEVELOPMENTS
- Real-time, field-portable lithium assays
- Advanced geochemical modelling
- New exploration targets developed

PROCESS TECHNOLOGY
- Proprietary technology licences procured
- High-purity lithium hydroxide produced
- Integrated circuit processing capabilities
- Efficiency superior to competitive processes
- New technology being developed for other mineral species

99.9% LITHIUM HYDROXIDE PRODUCED
- Produced by reprocessing lithium carbonate
- Awaiting final metallurgical reconciliations
- Marginal additional operating costs
- Exceptional value add
The lithium mica landscape

99.6% LITHIUM CARBONATE PRODUCED

- Capital cost $US164 M – includes sulphuric acid plant, power co-generation
- Zero energy footprint
- Benign tailings
- Capacity – 20,000 tpa of battery-grade lithium carbonate
- Operating cost <US$2,000/t after potassium sulphate credits
- Additional credits
 - Silicon chemicals
 - Aluminium chemicals
 - Rubidium and caesium chemicals

Global perspective

OPPORTUNITIES IDENTIFIED IN:

- Europe (large-scale greisen deposits)
- Africa (including Namibia, and South Africa)
- North America (Canada, Mexico and the US)
- Australia (including WA exclusive processing licence)
Cost profile

Estimated global lithium cost curve [sources: Roskill (with modifications) and Orecobre 2014 presentation].
Global lithium resources

CINOVEC EMERGES AS SIGNIFICANT LITHIUM RESOURCE

Lithium Inferred Resource: 5.5 Mt LCE, 514.8 Mt @ 0.43% Li₂O (0.1% Li cut-off)

Additional Exploration Target: 3.4 to 5.3 Mt LCE, 350 to 450 Mt @ 0.39-0.47% Li₂O*

CAUTIONARY STATEMENT The potential quantity and grade of the Exploration Target is conceptual in nature, there has been insufficient exploration to estimate a Mineral Resource and it is uncertain if further exploration will result in the estimation of a Mineral Resource.

* As announced to the ASX on 26 June 2015.
Company advantages

VALUE-ADDING FACTORS

Lithium extraction from unconventional sources

Service agreement with Strategic Metallurgy
Technology licences with Lepidico
Technical alliance with SciAps

First-mover advantage
LIT is the leader in the production of battery-grade lithium carbonate from micas, and has led to a rapid accumulation of assets and enabled expansion on three continents with diversification from lithium micas to a range of lithium silicates.

Alliances with Pilbara Minerals, Focus Minerals, and Tungsten Mining

Opportunities previously overlooked
- Tailings
- Current mine-waste discharge streams
- Primary lithium mica deposits

Escalating demand
- Revolutionary innovations in transport
- New renewable-energy storage solutions
- Emergence of smart-grid systems

Cinovec – non-binding HoA with EMH
- Giant lithium mica deposit in the Czech Republic
- Scoping study complete
- High-purity lithium carbonate produced
- Advancing to feasibility

ALiX – non-binding HoA
- Lithium clay evaluation
- Exploration potential
- Springboard into lithium-hungry North America

FURTHER INFORMATION
info@lithium-au.com
www.lithium-au.com
Adrian Griffin +61 8 6145 0288
Appendix 1 Cinovec Deposit – Czech Republic

VALUE ADDED PRODUCTS ENHANCE PROJECT VALUE

Since the release of the Cinovec scoping study in May 2015, lithium chemical prices have significantly increased. LIT’s demonstrated ability to produce lithium hydroxide provides access to a product now commanding US$14,000/t (as opposed to $6,500 for carbonate used in the scoping study). The upgrade requires only a marginal cost increase.

Largest European lithium deposit

- Non binding MoU with EMH
- EMH is owner of the project
- Terms of 50/50 JV on lithium production under negotiation
- 600 year tin production history
- Mica concentrates produced
- Li carbonate produced
- JORC resource
- Scoping study complete
- Carbonate op cost < $2000/t
- Potential hydroxide production
- Continuous tests scheduled
Appendix 2 Yilgarn Block project (WA)
Appendix 3 Pilgangoora project (WA)
Appendix 4 Electra – Sonora, Mexico

MEMORANDUM OF UNDERSTANDING

▸ Alix and LIT to co-operate to develop superior processing technology for lithium clays.

▸ Targets include lithium clay deposits adjacent to Bacanora’s Sonora Project (Mexico) – The Electra Lithium Project, which includes Tecolote and Tule.

▸ Tecolote and Tule are interpreted to host extensions of the sedimentary/volcanic succession that contains the lithium bearing clays.